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ABSTRACT

Given a graph G, a source node s and a target node t , the person-

alized PageRank (PPR) of t with respect to s is the probability that

a random walk starting from s terminates at t . A single-source PPR

(SSPPR) query enumerates all nodes in G, and returns the top-k

nodes with the highest PPR values with respect to a given source

node s . SSPPR has important applications in web search and social

networks, e.g., in Twitter’s Who-To-Follow recommendation ser-

vice. However, SSPPR computation is immensely expensive, and

at the same time resistant to indexing and materialization. So far,

existing solutions either use heuristics, which do not guarantee re-

sult quality, or rely on the strong computing power of modern data

centers, which is costly.

Motivated by this, we propose FORA, a simple and effective

index-based solution for approximate SSPPR processing, with rig-

orous guarantees on result quality. The basic idea of FORA is to

combine two existing methods Forward Push (which is fast but

does not guarantee quality) and Monte Carlo Random Walk (accu-

rate but slow) in a simple and yet non-trivial way, leading to an

algorithm that is both fast and accurate. Further, FORA includes

a simple and effective indexing scheme, as well as a module for

top-k selection with high pruning power. Extensive experiments

demonstrate that FORA is orders of magnitude more efficient than

its main competitors. Notably, on a billion-edge Twitter dataset,

FORA answers a top-500 approximate SSPPR query within 5 sec-

onds, using a single commodity server.
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1 INTRODUCTION

Personalized PageRank (PPR) is a fundamental operation first pro-

posed by Google [19], a major search engine. Specifically, given a

graph G and a pair of nodes s, t in G, the PPR value π (s, t) is de-
fined as the probability that a random walk starting from s (called

the source node) terminates at t (the target node), which reflects

the importance of t with respect to s . One particularly useful vari-

ant of PPR is the single-source PPR (SSPPR), which takes as input a

source node s and a parameter k , and returns the top-k nodes in

G with the highest PPR values with respect to s . According to a re-

cent paper [12], Twitter, a leading microblogging service, applies

SSPPR in their Who-To-Follow application, which recommends to

a user s (who is a node in the social graph) a number of other users

(with high PPR values with respect to s) that user s might want

to follow. Clearly, such an application computes SSPPR for every

user in the social graph on a regular basis. Hence, accelerating PPR

computation may lead to improved user experience (e.g., faster re-

sponse time), as well as reduced operating costs (e.g., lower power

consumption in the data center).

Similar to PageRank [19], PPR computation on a web-scale

graph is immensely expensive, which involves extracting eigen-

values of a n × n matrix, where n is the number of nodes that can

reach millions or even billions in a social graph. Meanwhile, unlike

PageRank, PPR values cannot be easily materialized: since each

pair of source/target nodes lead to a different PPR value, storing

all possible PPR values requires O(n2) space, which is infeasible

for large graphs. For these reasons, much previous work focuses

on approximate PPR computation (defined in Section 2.1), which

provides a controllable tradeoff between the execution time and

result accuracy. Meanwhile, compared to heuristic solutions, ap-

proximate PPR provides rigorous guarantees on result quality.

However, even under the approximate PPR definition, SSPPR

computation remains a challenging problem, since it requires sift-

ing through all nodes in the graph. To our knowledge, the majority

of existing methods (e.g., [15, 16, 22]) focus on approximate pair-

wise (i.e., with given source and target nodes) PPR computations.

A naive solution is to compute pair-wise PPR π (s,v) for each possi-
ble target nodev , and subsequently applies top-k selection. Clearly,

the running time of this approach grows linearly to the number of

nodes in the graph, which is costly for large graphs.

Motivated by this, we propose FORA (short for FOward Push

and RAndom Walks), an efficient algorithm for approximate

SSPPR computation. The basic idea of FORA is to combine two
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existing solutions in a simple and yet non-trivial way, which are

(i) Forward Push [1], which can either computes the exact SSPPR

results at a high cost, or terminate early but with no guarantee at

all on the result quality, and (ii) Monte Carlo [8], which samples

and executes random walks and provides rigorous guarantees on

the accuracy of SSPPR results, but is rather inefficient. In fact, this

idea is so effective that even without any indexing, basic FORA al-

ready outperforms its main competitors BiPPR [15] and HubPPR

[22]. Then, we describe a simple and effective indexing scheme for

FORA, as well as a novel algorithm for top-k selection. Extensive

experiments using several real graphs demonstrate that FORA is

more than two orders of magnitude faster than BiPPR, and more

than an order of magnitude faster than HubPPR. In particular, on

a billion-edge Twitter graph, FORA answers top-500 SSPPR query

within 5 seconds, using a single commodity server.

2 BACKGROUND

2.1 Problem Definition

Let G = (V ,E) be a directed graph. In case the input graph is

undirected, we simply convert it to a directed one by treating each

edge as two directed edges of opposing directions. Given a source

node s ∈ V and a decay factor α , a random walk (or more pre-

cisely, randomwalk with restart [10]) from s is a traversal ofG that

starts from s and, at each step, either (i) terminates at the current

node with α probability, or (ii) proceeds to a randomly selected

out-neighbor of the current node. For any node v ∈ V , the per-

sonalized PageRank (PPR) π (s,v) ofv with respect to s is then the

probability that a random walk from s terminates at v [19].

A single-source PPR (SSPPR) query takes as input a graph G, a

source node s , and a parameter k , and returns the top-k nodes with

the highest PPR values with respect to s , together with their respec-

tive PPR values. This paper focuses on approximate SSPPR process-

ing, and we first define a simpler version of the approximate SSPPR

without top-k selection (called approximate whole-graph SSPPR),

as follows.

Definition 2.1 (Approximate Whole-Graph SSPPR). Given a

source node s , a threshold δ , an error bound ϵ , and a failure prob-

ability pf , an approximate whole-graph SSPPR query returns an

estimated PPR π̂ (s,v) for each node v ∈ V , such that for any

π (s,v) > δ ,
|π (s,v) − π̂ (s,v)| ≤ ϵ · π (s,v) (1)

holds with at least 1 − pf probability. �

The above definition is consistent with existing work, e.g., [15,

16, 22]. Next we define the approximate top-k SSPPR, as follows.

Definition 2.2 (Approximate Top-k SSPPR). Given a source node

s , a threshold δ , an error bound ϵ , a failure probability pf , and

a positive integer k , an approximate top-k SSPPR query returns

a sequences of k nodes, v1,v2, · · · ,vk , such that with probability

1 − pf , for any i ∈ [1,k] with π (s,v∗i ) > δ ,
|π̂ (s,vi ) − π (s,vi )| ≤ ϵ · π (s,vi ) (2)

π (s,vi ) ≥ (1 − ϵ) · π (s,v∗i ) (3)

hold with at least 1 − pf probability, where v∗i is the node whose

actual PPR with respect to s is the i-th largest. �

Notation Description

G=(V , E) The input graph G with node set V and edge set E

n,m The number of nodes and edges inG , respectively

N out (v) The set of out-neighbors of node v

N in (v) The set of in-neighbors of node v

π (s, t ) The exact PPR value of t with respect to s

α The probability that a random walk terminates at a

step

δ, ϵ, pf Parameters of an approximate PPR query, as in Defi-

nitions 2.1 and 2.2

rmax The residue threshold for local update

r (s, v) The residue of v during a local update process from s

π ◦(s, v) The reserve of v during a local update process from s

rsum The sum of all nodes’ residues during a local update

process from s

Table 1: Frequently used notations.

Note that Equation 2 ensures the accuracy of the estimated PPR

values, while Equation 3 guarantees that the i-th result returned

has a PPR value close to the i-th largest PPR score. This definition is

consistent with previous work [22]. Following previous work [15,

16, 22], we assume that δ = O(1/n), where n is the number of nodes

in G. The intuition is that, we provide approximation guarantees

for nodes with above-average PPR values.

In addition, most applications of personalized PageRank con-

cern web graphs and social networks, in which case the underly-

ing input graphs are generally scale-free. That is, for any k ≥ 1, the

fraction f (k) of nodes inG that have k edges satisfies

f (k) = c · k−γ , (4)

where γ is a parameter with 2 ≤ γ ≤ 3, and c is a constant smaller

than 1. It can be verified that, in a scale-free graph with 2 ≤ γ ≤
3, the average node degree m/n = O(logn). We will analyze the

asymptotic performance of our algorithm on both general graphs

and scale-free graphs. Table 1 lists the frequently-used notations

throughout the paper.

Remark.Our algorithms can also handle SSPPR queries where the

source s is not fixed but sampled from a node distribution. Inter-

ested readers are referred to Appendix B.2 for details.

2.2 Main Competitors

Monte-Carlo. A classic solution for approximate PPR processing

is the Monte-Carlo (MC) approach [8]. Given a source node s , MC

generates ω random walks from s , and it records, for each node v ,

the fraction of random walks f (v) that terminate at v . It then uses

f (v) as an estimation of the PPR π̂ (s,v) of v with respect to s . Ac-

cording to [8], MC satisfies Definition 2.1 with a sufficiently large

number of random walks: ω = Ω

(
log (1/pf )

ϵ 2δ

)
. According to Refs.

[15, 16, 22] as well as our experiments in Section 5, MC is rather

inefficient. Specifically, the time complexity of MC isO
(
log (1/pf )

ϵ 2δ

)
.

As will be explained later in Section 3.2, when δ = O(1/n) and the
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Algorithm 1: Forward Push

Input: Graph G , source node s , probability α , residue threshold

rmax

Output: π ◦(s, v), r (s, v) for all v ∈ V
1 r (s, s) ← 1; r (s, v) ← 0 for all v , s ;

2 π ◦(s, v) ← 0 for all v ;

3 while ∃v ∈ V such that r (s, v)/ |N out (v) | > rmax do

4 for each u ∈ Nout (v) do
5 r (s, u) ← r (s, u) + (1 − α ) · r (s,v )

|N out (v )|
6 π ◦(s, v) ← π ◦(s, v) + α · r (s, v);
7 r (s, v) ← 0;

graph is scale-free, in which case m/n = O(logn), this time com-

plexity is a factor of 1/ϵ larger than that of FORA even without

indexing or top-k pruning.

BiPPR and HubPPR. BiPPR [15] and its successor HubPPR [22]

are currently the states of the art for answering pairwise PPR

queries, in which both the source node s and the target node t are

given, and the goal is to approximate the PPR value π (s, t) of t with
respect to s . The main idea of BiPPR is a bi-direction search on the

input graphG. The forward direction simply samples and executes

random walks, akin to MC described above. Unlike MC, however,

BiPPR requires a much smaller number of random walks, thanks

to additional information provided by the backward search.

The backward search in BiPPR (dubbed as reverse push) is origi-

nally proposed in [1], and is rather complicated. In a nutshell, the

reverse push starts from the target node t , and recursively propa-

gate residue and reserve values along the reverse directions of edges

in G. Initially, the residue is 1 for node t , and 0 for all other nodes.

The original reverse push [1] requires complete propagation un-

til the residues of all nodes become very small, which is rather

inefficient as pointed out in [15]. BiPPR performs the same back-

ward propagations, but terminates early when the residues of all

nodes are below a pre-defined threshold. Then, the method per-

forms forward search, i.e., random walks, utilizing the residue and

reserve information computed during backward search. The main

tricky part in BiPPR is how to set this residue threshold to mini-

mize computation costs, while satisfying Inequality 1. Intuitively,

if the residue threshold is set too high, then the forward search re-

quires numerous random walks to reach the approximation guar-

antee; conversely, if the residue threshold is too low, then the cost

of backward search dominates. Ref. [15] provides a careful anal-

ysis, and reports that a residue threshold of O
(
ϵ ·

√
m ·δ

n ·log (1/pf )
)

strikes a good balance between forward and backward searches,

and achieves a low overall cost for pair-wise PPR computation.

To extend BiPPR to SSPPR, one simple method is to enumer-

ate all nodes in G, and compute the PPR value for each of them

with respect to the source node s . The problem, however, is that

the residue threshold designed in [15] is not optimized for SSPPR,

leading to poor performance. To explain, observe that applying

BiPPR for SSPPR involves one backward search at each node in

G, but only one single forward search from s . Therefore, we im-

prove the performance of BiPPR by tuning down overhead of each

backward search at the cost of a less efficient forward search. This

optimization turns out to be non-trivial, and we present it in Ap-

pendix B.1. Nevertheless, the properly optimized version of BiPPR

still involves high costs since it either (i) degrades to the Monte-

Carlo approach if the residue threshold is large or (ii) incurs a large

number of backward searches if the residue threshold is small.

HubPPR [22] is an index structure based on BiPPR that features

an improved algorithm for top-k queries. Since HubPPR inherits

the deficiencies of the BiPPR, it is not suitable for SSPPR, either.

We will demonstrate this in our experiments in Section 5.

Forward Push. Forward Push [2] is an earlier solution that is not

as efficient as BiPPR and HubPPR. We describe it in detail here

since the proposed solution FORA uses its components. Specifi-

cally, Forward Push can compute the exact PPR values at a high

cost. It can also be configured to terminate early, but without any

guarantee on result quality. Algorithm 1 shows the pseudo-code of

Forward Push for whole-graph SSPPR processing. It takes as input

G, a source node s , a probability value α , and a threshold rmax ;

its output consists of two values for each node v in G: a reserve

π◦(s,v) and a residue r (s,v). The reserve π◦(s,v) is an approxi-

mation of π (s,v), while the residue r (s,v) is a by-product of the

algorithm. In the beginning of the algorithm, it sets r (s, s) = 1 and

π◦(s, s) = 0, and sets r (s,v) = π◦(s,v) = 0 for any v , s (Lines 1-2

in Algorithm 1). Subsequently, the residue of s is converted into

other nodes’ reserves and residues in an iterative process (Lines

3-7).

Specifically, in each iteration, the algorithmfirst identifies every

node v with
r (s,v)
|N out (v) | > rmax , where N

out denotes the set of

out-neighbors of v (Line 3). After that, it propagates part of v’s

residue to each u of v’s out-neighbors, increasing u’s residue by

(1 − α) · r (s,v)
|N out (v) | . Then, it increases v’s reserve by α · r (s,v), and

resets v’s residue to r (s,v) = 0. This iterative process terminates

when every node v has
r (s,v)
|N out (v) | ≤ rmax (Line 3).

Andersen et al. [2] show that Algorithm 1 runs in O(1/rmax )
time, and that the reserve π◦(s,v) can be regarded as an estimation

of π (s,v). This estimation, however, does not offer any worst-case

assurance in terms of absolute or relative error. As a consequence,

Algorithm 1 itself is insufficient for addressing the problem formu-

lated in Definitions 2.1 and 2.2.

3 FORA

This section presents the proposed FORA algorithm. We first de-

scribe a simpler version of FORA for whole-graph SSPPR (Defini-

tion 2.1) without indexing in Sections 3.1 and Sections 3.2. Then,

we present the indexing scheme of FORA in Section 3.3, and top-k

selection in Section 3.4.

3.1 Main Idea

As reviewed in Section 2.2, (i) MC is inefficient due to a large num-

ber of random walks required to satisfy the approximation guaran-

tee, (ii) BiPPR and HubPPR either degrade to MC, or require fewer

forward random walks but still incur high cost due to numerous

backward search operations, and (iii) Forward Push with early ter-

mination provides no formal guarantee on result quality. The pro-

posed solution FORA can be understood as a combination of these

methods. In particular, FORA first performs Forward Push with
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Algorithm 2: FORA for Whole-Graph SSPPR

Input: Graph G , source node s , probability α , threshold rmax

Output: Estimated PPR π̂ (s, v)for all v ∈ V
1 Invoke Algorithm 1 with input parameters G , s , α , and rmax ; let

r (s, vi ), π ◦(s, vi ) be the returned residue and reserve of node vi ;

2 Let rsum =
∑
vi ∈V r (s, vi ) and ω = rsum ·

(2ϵ/3+2)·log (2/pf )
ϵ2 ·δ ;

3 Let π̂ (s, vi ) = π ◦(s, vi ) for all vi ∈ V ;

4 for vi ∈ V with r (s, vi ) > 0 do

5 Let ωi = ⌈r (s, vi ) · ω/rsum ⌉;
6 Let ai =

r (s,vi )
rsum

· ωωi ;
7 for i = 1 to ωi do

8 Generate a random walkW from vi ;

9 Let t be the end point ofW ;

10 π̂ (s, t )+ = ai ·rsum
ω ;

11 return π̂ (s, v1), · · · , π̂ (s, vn );

early termination, and subsequently runs randomwalks. Similar to

BiPPR and HubPPR, FORA utilizes information obtained through

Forward Push to significantly cut down the number of required

random walks while satisfying the same result quality guarantees.

But unlike BiPPR and HubPPR, in FORA there is a single invoca-

tion of Forward Push starting from the source node s , while BiPPR

and HubPPR invokes numerous backward search operations. The

tricky part in FORA is how to combine Forward Push with MC,

explained below.

Specifically, the reason that Forward Push with early termina-

tion fails to obtain any result quality guarantee is that it uses

π◦(s,v) to approximate π (s,v), and yet, the two values are not

guaranteed to be close. To mitigate this deficiency, we aim to uti-

lize the residue r (s,v) to improve the accuracy of π◦(s,v). Towards
this end, we utilize the following result from [2]:

π (s, t) = π◦(s, t) +
∑
v ∈V

r (s,v) · π (v, t), (5)

for any s , t , v inG. Our idea is to derive a rough approximation of

π (v, t) for each node v (denoted as π ′(v, t)), and then combine it

with the reserve of each node to compute an estimation of π (s, t):

π (s, t) = π◦(s, t) +
∑
v ∈V

r (s,v) · π ′(v, t).

In particular, we derive π ′(v, t) by performing a number of random

walks from v , and set π ′(v, t) to the fraction of walks that ends at

t .

It remains to answer two key questions in FORA: (i) how many

random walks do we need for each nodev? and (ii) how should we

set the residue threshold rmax in Forward Push? It turns out that

although the FORA algorithm itself is simple, deriving the proper

values for its parameters is rather challenging, since theymust opti-

mize efficiency while satisfying the result quality guarantee. In the

following, we first present the complete FORA and answer ques-

tion (i); then we answer question (ii) in Section 3.2.

Algorithm 2 illustrates the pseudo-code of FORA. Given G, a

source node s , a probability value α , and a residue threshold rmax ,

FORA first invokes Algorithm 2 onG to obtain a reserve π◦(s,vi )

and a residue r (s,vi ) for each node vi (Line 1 in Algorithm 2). Af-

ter that, it computes the total residue of all nodes rsum , based on

which it derives a valueω that will be used to decide the number of

random walks required from each nodevi (Line 2). Then, it initial-

izes the PPR estimation of each vi to be π̂ (s,vi ) = π◦(s,vi ), and it

proceeds to inspect the nodes whose residues are larger than zero

(Line 3-4).

For each vi of those nodes, it performs ωi random walks from

vi , where

ωi =

⌈
r (s,vi )
rsum

· ω
⌉
.

If a random walk ends at a node t , then FORA increases π̂ (s,vi )
by ai ·rsum

ω , where

ai =
r (s,vi )
rsum

· ω
ωi
.

After all vi are processed, the algorithm returns π̂ (s,vi ) as the ap-
proximated PPR value for vi (Line 11).

To explain why FORA can provide accurate results, let us con-

sider the ωi random walks that it generates from a node vi . Let

X j (t) be a Bernoulli variable that takes value 1 if the j-th random

walk terminates at t , and value 0 otherwise. By definition,

E[X j ] = π (vi , t).
Then, based on the definition of ω, ωi , and ai , we have

E


rsum

ω
·
ωi∑
j=1

(
ai · X j

)
= r (s,vi ) · π (vi , t). (6)

Observe that
rsum
ω · ∑ωi

j=1

(
ai · X j

)
is exactly the amount of incre-

ment that π̂ (s, t) receives when FORA processesvi (see Lines 7-10

in Algorithm 2). We denote this increment asψi . It follows that

E

[
n∑
i=1

ψi

]
=

n∑
i=1

r (s,vi ) · π (vi , t). (7)

Combining Equations 5 and 7, we can see that FORA returns, for

each node v , an estimated PPR π̂ (s,v) whose expectation equals

π (s,v). Next, we will show that π̂ (s,v) is very close to π (s,v) with
a high probability. For this purpose, we utilize the following con-

centration bound:

Theorem 3.1 ([7]). Let X1, · · · ,Xω be independent random vari-

ables with

Pr[Xi = 1] = pi and Pr[Xi = 0] = 1 − pi .
Let X = 1

ω ·
∑ω
i=1 aiXi with ai > 0, and ν = 1

ω

∑ω
i=1 a

2
i · pi . Then,

Pr[|X − E[X ]| ≥ λ] ≤ 2 · exp
(
− λ2 · ω
2ν + 2aλ/3

)
,

where a = max{a1, · · · ,aω }. �

To apply Theorem 3.1, let us consider theω′ =
∑n
i=1ωi random

walks generated by FORA. Let bj = ai if the j-th random walk

starts from vi . Then, we have maxj bj = 1, and b2j ≤ bj for any j.
In addition, let Yj (t) be the a random variable that equals 1 if the

j-th walk terminates at t , and 0 otherwise. Then, by Theorem 3.1

and Equations 5 and 7, we have the following result.
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Lemma 3.2. For any nodev with π (s,v) > δ , Algorithm 2 returns

an approximated PPR π̂ (s,v) that satisfies Equation 1 with at least

1 − pf probability. �

3.2 Choosing rmax

Recall from Sections 2.2 and 3.1 that parameter rmax determines

how quickly we can terminate Forward Push. A high value for

rmax leads to low cost for Forward Push (since it can terminate

early), but high cost for random walks (since a large number of

them are required), and vice versa. Thus, finding the appropri-

ate value of rmax requires modelling the overall running time of

FORA. Recall that, the Forward Push runs in O
(

1
rmax

)
time. In

addition, the expected time complexity of the random walk phase

isO
(
rsum · (2ϵ/3+2)·log (2/pf )ϵ 2

)
, since each random walk takesO(1)

expected time to generate. Observe that

rsum =
∑
vi ∈V

r (s,vi ) ≤
∑
vi ∈V

rmax · |N out (vi )| =m · rmax .

Therefore, the expected running time of Algorithm 2 is

O
(

1
rmax

+m · rmax · (2ϵ/3+2)·log (2/pf )ϵ 2 ·δ
)
.

Using the method of Lagrange multipliers, we can see that the

above time complexity is minimized when

rmax =
ϵ√
m
·
√

δ

(2ϵ/3 + 2) · log (2/pf )
. (8)

Accordingly, the expected time complexity ofAlgorithm2 becomes

O
(

1

ϵ ·
√
δ

√
m · (2ϵ/3 + 2) · log (2/pf )

)
.

When δ = O(1/n), pf = O(1/n), the above time complexity

becomes O
(
1
ϵ

√
m · n · logn

)
for general graphs. When the graph

is scale-free, in which case m/n = O(logn), the time complexity

becomes O
(
1
ϵ n · logn

)
, improving over the MC approach by 1/ϵ .

3.3 Indexing Scheme

Based on FORA, we propose a simple and effective index structure

to further improve the efficiency of whole-graph SSPPR queries.

The basic idea is to pre-compute a number of random walks from

each node v , and then store the destination of each walk. During

query processing, if FORA requires x performing random walks

fromv , wewould inspect the set S of randomwalk destinations pre-

computed forv , and then retrieve the first x nodes in S . As such, we

avoid generating any randomwalks on-the-fly, which considerably

reduces query overheads.

A natural question to ask is: how many random walks should

we pre-compute for each nodev? To answer this question, we first

recall that, when the local update phase of FORA terminates, the

residue of each nodev is at most |N out (v)| · rmax . Combining this

with Lemma 3.2, we can see that the number of randomwalks from

v required by FORA is⌈
|N out (v)| · rmax ·

(2ϵ/3 + 2) · log (2/pf )
ϵ2 · δ

⌉
. (9)

Since we set rmax according to Equation 8, we have

Eqn. 9 =

⌈
|N out (v)| · 1

ϵ ·
√
m · δ

·
√
(2ϵ/3 + 2) · log (2/pf )

⌉

We use ωmax (v) to denote the r.h.s. of the above equation.
In summary, we pre-computeωmax (v) randomwalks from each

nodev , and record the last nodes of those walks in our index struc-

ture. The total space overhead incurred is∑
v

ωmax (v) =
∑
v

⌈
|N out (v)| ·

√(2ϵ/3+2)·log (2/pf )
ϵ ·
√
m ·δ

⌉

≤ n +
√
m

ϵ ·
√
δ
·
√
(2ϵ/3 + 2) · log (2/pf ).

Therefore, we have the following lemma.

Lemma 3.3. The space consumption of our index structure is

O

(
n + 1

ϵ

√
m log (1/pf )

δ

)
. (10)

When δ = O(1/n), pf = O(1/n), and m/n = O(logn), the above
space complexity becomesO

(
1
ϵ n · logn

)
. �

Remark. One may wonder whether we can also pre-compute

the Forward Push result for each node, so that we can answer each

query by a simple combination of pre-processed Forward Push

and random walks, which could lead to higher query efficiency.

However, we note that storing the Forward Push results for all

nodes incurs significant space overheads. In particular, it requires

O (min{n, 1/rmax }) space for each node, where rmax is set accord-

ing to Equation 8. As such, the total space consumption for prepro-

cessing Forward Push results is

O

(
min

{
n2, nϵ ·

√
m ·log (1/pf )

δ

})
,

which is prohibitive for large graphs. Therefore, we do not store

Forward Push results in our index structure.

3.4 Top-k SSPPR

In this section, we discuss how FORA handles approximate top-k

SSPPR queries.

Rationale. A straightforward approach to answer a top-k SSPPR

query with FORA is to first apply it to perform a whole-graph

SSPPR query, and then returns the k nodes with the largest ap-

proximate PPR values. However, if we are to satisfy the accuracy

requirement described in Definition 2.2, we would need to set the

parameters of FORA according to the exact k-th largest PPR value

π (s,v∗
k
), which is unknown in advance. To address this, a naive

solution is to conservatively set π (s,v∗
k
) = 1/n, which, however,

would lead to unnecessary overheads.

To avoid the aforementioned overheads, we propose a trial-and-

error approach as follows. We first assume that π (s,v∗
k
) is a large

value (e.g., 1/2), and we set the parameters of FORA accordingly

to perform a whole-graph SSPPR query. After that, we inspect the

results obtained to check whether the estimated PPR values are in-

deed large. If they are not as large as we have assumed, then we

re-run FORA with more conservative parameters, and check the

new results returned. This process is conducted iteratively, until
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Algorithm 3: Top-k FORA

Input: Graph G , source node s , probability α

Output: k nodes with the highest approximate PPR scores

1 for δ = 1
2 , · · · , 1

n do

2 Invoke Algorithm 2 withG , s , α , and rmax set by Equation 8

and fail probability p′
f
=

pf
n ·logn ;

3 Let C = {v ′1, · · · , v ′k } be the set that contains the k nodes with

the top-k largest lower bounds (from Theorem 3.1);

4 Let LB(u) and U B(u) be the lower and upper bounds of π (s, u)
(from Theorem 3.1);

5 if UB(v ′i ) < (1 + ϵ ) · LB(v ′i ) for i ∈ [1, k] and LB(v ′
k
) ≥ δ

then

6 Let U be the set of nodes u ∈ V \ C such that

UB(u) > (1 + ϵ ) · LB(v ′
k
);

7 if �u ∈ U such that U B(u) < (1 + ϵ ) · LB(u)/(1 − ϵ ) then
8 return v ′1, v

′
2, · · · , v ′k and their estimated PPR;

we are confident that the results from FORA conform to the re-

quirements in Definition 2.2.

Algorithm. Algorithm 3 shows the pseudo-code of the top-k ex-

tension of FORA. The algorithm consists of at most logn iterations.

In the i-th iteration, we invoke Algorithm 2 with δ set to 1/2i , and
the failure probability set to p ′

f
=

pf
n logn

(Lines 1-2 in Algorithm 3.

(The reason for this setting will be explained shortly). After we

obtain the results from FORA, we compute an upper bound and

a lower bound of each node’s PPR value, and use them to decide

whether the current top-k results are sufficiently accurate (Lines

3-8). If the top-k results are accurate, then we return them as the

top-k answers (Line 8); otherwise, we proceed to the next iteration.

In the following, we elaborate how the upper and lower bounds of

each node’s PPR value is derived.

Define LB0(v) = 0 and UB0(v) = 1 for any v ∈ V . We have

the following theorem that establishes the lower bound LB j (v) and
upper bound UB j (v) of π (s,v) in the j-th iteration of Algorithm 3:

Theorem 3.4. In the j-th iteration of Algorithm 3, let ωj be the

ω calculated by FORA (Algorithm 2 Line 2) in this iteration, and

π◦j (s,v) and π̂j (s,v) be the reserve and estimated PPR of v . Define

ϵj =

√√√
3rsum · log (2/p ′f )

ωj ·max{π◦j (s,v),LB j−1(s,v)}
, and λj =

2/3 log (2/p f ′)
2ωj

+

√
4
9r

2
sum · log2 (2/p ′f ) + 8rsum · ωj · log (2/p ′f ) ·UB j−1(v)

2ωj

Then, with at least 1 − p ′
f
probability, the following two inequalities

hold simultaneously:

π̂j (s,v)/(1 + ϵj ) ≤π (s,v) ≤ π̂j (s,v)/(1 − ϵj )
π̂j (s,v) − λi ≤π (s,v) ≤ π̂j (s,v) + λi .

Theorem 3.4 enables us to derive tight lower and upper bounds

of each node’s PPR value in each iteration. In particular, we set

UB j (v) =min{1, π̂j (s,v)/(1 − ϵ), π̂j (s,v) + λi },

LB j (v) = max{π̂j (s,v)/(1 + ϵ), π̂j (s,v) − λi , 0}.
With these upper and lower bounds, the following theorem shows

that if Lines 5 and 7 in Algorithm 3 holds, then Algorithm 3 returns

the answer for the approximate top-k SSPPR query.

Theorem 3.5 (Approximate Top-k). Let v ′1, · · · ,v ′k be the k

nodes with the largest lower bounds in the j-th iteration of Algo-

rithm 3. Let U be the set of nodes u ∈ V \ C such that UB j (u) >
(1+ϵ)·LB j(v ′k ), IfUB(v ′i ) < (1+ϵ)·LB(v ′i) for i ∈ [1,k], LB j (v ′k ) ≥ δ ,
and there exists nou ∈ U such thatUB j (u) < (1+ϵ) ·LB j(u)/(1−ϵ),
then returningv ′1, · · · ,v ′k and their estimated PPR values would sat-

isfy the requirements in Definition 2.2 with at least 1 − j · n · p ′
f

probability.

Now recall that the number of iterations in Algorithm 3 is logn,

and in each iteration, we assume that the upper and lower bounds

are correct. Hence, by applying union bound, the failure probabil-

ity will be at most n logn · p ′
f
. Note that p ′

f
=

pf
n logn

. The failure

probability is hence no more than pf , and we guarantee that the

returned answer has approximation with at least 1−pf probability.

4 OTHER RELATED WORK

Apart from the methods discussed in Section 2.2 , there exists a

plethora of techniques for whole-graph and top-k SSPPR queries.

Those techniques, however, are either subsumed by BiPPR and

HubPPR or unable to provide worst-case accuracy guarantees. In

particular, a large number of techniques adopt the matrix-based

approach, which formulates PPR values with the following equa-

tion:

πs = α · es + (1 − α) · πs · D−1A, (11)

where πs is a vector whose i-th element equals π (s,vi ), A ∈
{0, 1}n×n is the adjacency matrix ofG, and D ∈ Rn×n is a diagonal

matrix in which each i-th element on its main diagonal equals the

out-degree ofvi . Matrix-based methods typically start from an ini-

tial guess ofπs , and then iteratively apply Equation 11 to refine the

initial guess, until converge is achieved. Recent work that adopts

this approach [10, 17, 21, 24] propose to decompose the input graph

into tree structures or sub-matrices, and utilize the decomposition

to speed up the PPR queries. The state-of-the-art approach for the

single-source and top-k PPR queries in this line of research work

is BEAR proposed by Shin et al. [21]. However, as shown in [22],

the best of these methods is still inferior to HubPPR [22] in terms

of query efficiency and accuracy.

There also exist methods that follow similar approaches to the

forward search method [2] described in Section 2.2. Berkin et al.

[6] propose to pre-compute the Forward Push results from several

important nodes, and then use these results to speed up the query

performance. Ohsaka et al. [18] and Zhang et al. [23] further de-

sign algorithms to update the stored Forward Push results on dy-

namic graphs. Jeh et al. [13] propose the backward search algo-

rithm, which (i) is the reverse variant of the Forward Push method,

and (ii) can calculates the estimated PPRs from all nodes to a tar-

get node t . Zhang et al. [23] also design the algorithms to update

the stored backward push results on dynamic graphs. Nonethe-

less, none of these solutions in this category provide approxima-

tion guarantees for single-source or top-k PPR queries on directed

graphs.
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Name n m Type Linking Site

DBLP 613.6K 2.0M undirected www.dblp.com

Web-St 281.9K 2.3M directed www.stanford.edu

Pokec 1.6M 30.6M directed pokec.azet.sk

LJ 4.8M 69.0M directed www.livejournal.com

Orkut 3.1M 117.2M undirected www.orkut.com

Twitter 41.7M 1.5B directed twitter.com

Table 2: Datasets. (K = 103,M = 106,B = 109)

In addition, there are techniques based on the Monte-Carlo

framework. Fogaras et al. [8] propose techniques to pre-store the

random walk results, and use them to speed up the query process-

ing. Nonetheless, the large space consumption of the technique

renders it applicable only on small graphs. Bahmani et al. [4] and

Sarma et al. [20] investigate the acceleration of theMonte-Carlo ap-

proach in distributed environments. Lofgren et al. propose FastPPR

[16], which significantly outperforms the Monte-Carlo method in

terms of query time. However, FastPPR in turn is subsumed by

BiPPR [15] in terms of query efficiency. In [14], Lofgren further

proposes to combine a modified version of Forward Push, random

walks, and the back search algorithm to reduce the processing time

of pairwise PPR queries. Nevertheless, the time complexity of the

method remains unclear, since [14] does not provide any theoreti-

cal analysis on the asymptotic performance of the method.

Finally, Ref. [3, 5, 9–11, 15] present studies on the top-k PPR

queries. Gupta et al. [11] propose to use Forward Push to return

the top-k answers. However, their solutions do not provide any

approximation guarantee. Avrachenkov et al. [3] study how to use

Monte-Carlo approach to find the top-k nodes. Nevertheless, the

solution does not return estimated PPR values and does not pro-

vide any worst-case assurance. Fujiwara et al. [9, 10] and Shin et

al.[21] investigate how to speed up the top-k PPR queries with the

matrix decomposition approach. These approaches either cannot

scale to large graphs or do not provide approximation guarantees.

5 EXPERIMENTS

In this section, we experimentally evaluate FORA and its index-

based variant, referred to as FORA+, against the states of the art.

All experiments are conducted on a Linux machine with an Intel

2.6GHz CPU and 64GB memory.

5.1 Experimental Settings

Datasets and query sets. We use 6 real graphs: DBLP, Web-St,

Pokec, LJ, Orkut, and Twitter, which are benchmark datasets used

in recent work [15, 22]. Table 2 summarizes the statistics of the

data. For each dataset, we choose 50 source nodes uniformly at ran-

dom, and we generate an SSPPR query from each chosen node. In

addition, we also generate 5 top-k queries from each source node,

with k varying in {100, 200, 300, 400, 500}. Note that the maximum

k is set to 500 in accordance to Twitter’s Who-To-Follow service

[12], whose first step requires deriving top-500 PPR results.

Methods. For whole-graph SSPPR queries, we compare our pro-

posed FORA and FORA+ against three methods: (i) the Monte-

Carlo approach, dubbed asMC; (ii) the optimized BiPPR for SSPPR

MC BiPPR HubPPR FORA FORA+

DBLP 12.9 3.5 2.4 0.7 0.07

Web-St 5.0 3.5 1.5 0.03 0.01

Pokec 66.4 23.7 19.2 12.1 0.8

LJ 144.7 57.8 48.3 21.0 1.8

Orkut 241.4 168.7 133.2 46.4 4.9

Twitter 4.6K 3.3K 2.8K 891.5 103.1

Table 3: Whole-graph SSPPR performance (s). (K = 103)

queries described in Appendix B.1; (iii) HubPPR, which is the in-

dexed version of BiPPR. For fair comparison, the index size of

HubPPR is set to be the same as that of FORA+. For top-k SSPPR

queries, we compare our algorithm with the existing approximate

solutions: the single-source MC, the single-source BiPPR, as well

as the top-k algorithm for HubPPR in [22]. We also include the For-

ward Push as a baseline for top-k SSPPR queries, and we tune its

parameter rmax on each dataset separately, so that its precision for

top-k PPR queries is the same as FORA on each dataset. Following

previous work[15, 16, 22], we set δ = 1/n,pf = 1/n, and ϵ = 0.5.

5.2 Whole-Graph SSPPR Queries

In our first set of experiments, we evaluate the efficiency of each

method for whole-graph SSPPR queries. Table 3 reports the aver-

age query time of each method. Observe that both FORA and BiPPR

achieve better query performance than MC, which is consistent

with our analysis that the time complexity of FORA and BiPPR is

better than that of MC. Moreover, FORA is at least 3 times faster

than BiPPR on most of the datasets.

The reason, as we explain in Section 3.2, is that BiPPR either de-

grades to the MC approach when the backward threshold is large,

or requires conducting a backward search from each node v in G,

even if π (s,v) is extremely small. In contrast, FORA avoids degrad-

ing to MC and tends to omit nodes with small PPR values, which

helps improve efficiency.

In addition, FORA+ achieves significant speedup over FORA, and

is around 10 times faster than the latter onmost of the datasets. The

HubPPR also improves over BiPPR, but the improvement is far less

than what FORA+ achieves over FORA. Moreover, even without

any index, FORA is still more efficient than HubPPR.

5.3 Top-k SSPPR Queries

In our second set of experiments, we evaluate the efficiency and

accuracy of each method for top-k SSPPR queries. Figures 1 re-

ports the average query time of each method on four representa-

tive datasets: DBLP, Pokec, Orkut, and Twitter. (The results on the

other two datasets are qualitatively similar, and are omitted due

to the space constraint.) Note that the y-axis is in log-scale. The

main observation is that FORA and FORA+ both considerably out-

perform competitors. In particular, FORA is up to two orders of

magnitude faster than MC and BiPPR. This is expected since our

top-k algorithm applies an iterative approach to refine the top-k

answers and terminates immediately whenever the answer could

provide the desired approximation guarantee.HubPPR’s top-k algo-

rithm has a similar early-termination mechanism, but it is still out-

performed by our FORA bymore than an order of magnitude, since
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Figure 1: Top-k SSPPR query efficiency: varying k .
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Figure 2: Top-k SSPPR query accuracy: varying k .

Datasets
Preprocessing

time (sec)

Space overhead of

HubPPR & FORA+

HubPPR FORA+ Index size Graph size

DBLP 28.7 4.9 90.8MB 18.4MB

Web-St 11.8 2.0 45.5MB 10.4MB

Pokec 112.3 38.6 411.9MB 130.8MB

LJ 307.9 97.1 1.1GB 295.2MB

Orkut 582.2 204.9 1.6GB 950.1MB

Twitter 5849.0 3335.1 12.6GB 6.2GB

Table 4: Preprocessing costs.

HubPPR inherits the deficiences of BiPPR on SSPPR queries. Recall

that Forward Push provides no approximation guarantee, and we

tune the rmax on each dataset separately, so that it provides the

same precison for top-500 SSPPR queries as our FORA algorithm

does. Observe that, when both algorithms provide the identical pre-

cision, the performance of the proposed FORA and Forward Push

is roughly comparable on small and medium size graphs, e.g., on

DBLP, Pokec, and Orkut. When the graph size increases, however,

FORA dominates the Forward Push in terms of the query efficiency.

In particular, on Twitter, FORA is faster than Forward Push by an

order of magnitude.

To compare the accuracy of the top-k results returned by each

method, we first calculate the ground-truth answer of the top-k

queries using the Power Iteration [19] method with 100 iterations.

Afterwards, we evaluate the top-k results of each algorithm by

their precision with respect to the ground truth. Note that the pre-

cision and recall are the same for the top-k SSPPR queries. Fig-

ure 2 shows the accuracy of the top-k query algorithms on four

datasets: DBLP, Pokec,Orkut, and Twitter. Observe that all methods

provide high precisions, and FORA, FORA+, BiPPR, and HubPPR are

all slightly more accurate than MC.

5.4 Preprocessing Costs

Finally, we inspect the preprocessing costs of the two index-based

methods, FORA+ and HubPPR. Recall that we set the index size of

HubPPR the same as the proposed FORA+. As shown in Table 4, the

preprocessing time of FORA and HubPPR are both moderate, and

the cost of FORA is much smaller than that of HubPPR. In addition,

even on the largest dataset Twitter, FORA+ can finish the index

construction in less than an hour. Table 4 also reports the index

size of FORA+ and HubPPR. We also add the space consumption

of the input graph as the reference values. As we can observe, the

index size of FORA+ is no more than 4 times the original graph in

general. In particular, on Orkut, the index size of FORA+ is only 1.7

times the input graph, and yet, as we show in Sections 5.2 and 5.3, it

can speed up the query efficiency of whole-graph and top-k SSPPR

queries by around 10 times. This demonstrates the effectiveness

and efficiency of our indexing scheme.

6 CONCLUSION

Wepresent FORA, a novel algorithm for approximate single-source

personalized PageRank computation. The main ideas include (i)

combining Monte-Carlo random walks with Forward Push in a

non-trivial and optimized way (ii) pre-computing and indexing

randomwalk results and (iii) additional pruning based on top-k se-

lection. Compared to existing solutions, FORA involves a reduced

number of random walks, avoids expensive backward searches,

and provides rigorous guarantees on result quality. Extensive ex-

periments demonstrate that FORA outperforms existing solutions

by a large margin, and enables fast responses for top-k SSPPR

searches on very large graphs with little computational resource.
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APPENDIX

A PROOF OF THEOREM

Proof of Lemma 3.2. Firstly, let X j be the j-th random walk.

Define Y ′ = 1
ω ′

∑ω ′
j=1 bjX j , and ν = 1

ω ′
∑ω ′
j=1 b

2
j E[X j ]. Let a =

max{b1, · · · ,bω ′}. By definition, b2j ≤ 1, and hence, ν ≤ E[Y ′] and
a ≤ 1. By Theorem 3.1, Pr[|Y ′−E[Y ′]| ≥ λ] ≤ 2 · exp

(
− λ2 ·ω ′
2ν+2aλ/3

)
.

Apply ν ≤ E[Y ′], we have

Pr[|Y ′ − E[Y ′]| ≥ λ] ≤ 2 · exp
(
− λ2 · ω′
2E[Y ′] + 2aλ/3

)
.

By Equation 6 and E[Y ′] ≤ ω
ω ′ ·rsum · π (s, t),

Pr[|π (s, t)−π̂ (s, t)| ≥ ω′ · rsum
ω

λ] ≤ 2·exp ©«
− λ2 · ω′

2
ω ·π (s,t )
ω ′ ·rsum + 2aλ/3

ª®
¬
.

Let λ =
ω ·ϵ ·π (s,t )
ω ′ ·rsum , we have

Pr[|π (s, t)− π̂ (s, t)| ≥ ϵ ·π (s, t)] ≤ 2 · exp
(
− ϵ2 · ω · π (s, t)
rsum · (2 + 2a · ϵ/3)

)
.

As we only consider approximation for π (s, t) > δ and a ≤ 1,

Pr[|π (s, t) − π̂ (s, t)| ≥ ϵ · π (s, t)] ≤ 2 · exp
(
− ϵ2 · ω · δ
rsum · (2 + 2ϵ/3)

)
.

Since ω = rsum · (2ϵ/3+2)·log (2/pf )ϵ 2 ·δ , we can conclude that

Pr[|π (s, t) − π̂ (s, t)| ≥ ϵ · π (s, t)] ≤ pf
holds for π (s, t) > δ . Also notice that the target t is arbitrarily cho-
sen, and we can derive this bound for all nodes v ∈ V . Hence, the
returned answer for the single-source PPR query satisfies Defini-

tion 2.1, which finishes the proof. �

Proof of Theorem 3.4. Given ωj , we can derive that:

Pr[|π (s, t) − π̂ (s, t)| ≥ ϵ · π (s, t)] ≤ 2 · exp
(
−ϵ

2 · ωj · π (s, t)
2 + 2a · ϵ/3

)
.

Since a ≤ 1 and π (s, t) ≥ π◦(s, t), and π (s, t) ≥ LB j−1(t), we can
derive that:

Pr[|π (s, t) − π̂ (s, t)| ≥ ϵ · π (s, t)] ≤

2 exp

(
−
ϵ2 · ωj ·max{π◦j (s,v),LB j−1(s,v)}

2 + 2ϵ/3

)
.

Let p ′
f

equal the RHS of the above inequality. We have ϵ ≥√
3 log (2/p′

f
)

ωj ·max{π ◦j (s,v),LBj−1(s,v)}
.

By setting ϵj =

√
3 log (2/p′

f
)

ωj ·max{π ◦j (s,v),LBj−1(s,v)}
, we can derive that

π̂j (s,v)/(1 + ϵj ) ≤ π (s,v) ≤ π̂j (s,v)/(1 − ϵj ) holds with 1 − p ′
f

probability. Similarly, we have

Pr[|π (s, t)−π̂ (s, t)| ≥ ϵ ·π (s, t)] ≤ 2 exp

(
− λ2 · ω
rsum · (2π (s, t) + 2λ/3)

)

Letp ′
f
equal the RHSof the above inequality, and note thatπ (s, t) ≤

UB j−1(t). This helps us derive the designed bound for λj . �

Proof of Theorem 3.5. We apply a similar technique in [22]. If

LB j (v ′i ) · (1 + ϵ) > UB j (v ′i ). Then, it can be derived that

π̂ (v ′i ) ≤ UB j (v ′i ) ≤ LB j (v ′i ) · (1 + ϵ) ≤ (1 + ϵ) · π (s,v ′i ).
π̂ (v ′i ) ≥ LB j (v ′i ) ≥ UB j (v ′i )/(1 + ϵ) ≥ (1 − ϵ) · π (s,v ′i ).

Hence, v ′1, · · · ,v ′k satisfy Equation 2. Let v1, · · · ,vk be the k

nodes that have the top-k exact PPR values. Assume that all bounds

are correct, then as LB(v ′
l
) ≥ δ , it indicates that the top-k PPR

values are no smaller than δ . In this case, all the top-k nodes should
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satisfy ϵ-approximation guarantee, i.e., they satisfy that UB(vi ) <
(1 + ϵ) · LB(vi)/(1 − ϵ).

Let UB ′j (1),UB ′j (2), · · ·UB ′j (k) be the top-k largest PPR upper

bounds in the j-th iteration. Note that, the i-th largest PPR satisfy

that UB ′j (i) ≥ π (s,vi ) ≥ LB j (s,v ′i ).
Now assume that one of the upper bounds say UB ′j (i) is not

from UB(v1), · · · ,UB(vk ). If it satisfies that LB j (v ′k ) · (1 + ϵ) ≥
UB ′j (i), it indicates that LB j (v ′i ) · (1 + ϵ) ≥ UB ′j (i) for all nodes.
Hence, we update the nodewhose upper bound isminimum among

UB j (v ′1), · · · ,UB j (v ′1), we can still guarantee that LB j (v ′i )·(1+ϵ) >
UB j (v ′i ).We repeat this process untilUB j (v ′1), · · · ,UB j (v ′k ) are the
top-k upper bounds. On the other hand, let U be the set of nodes

such that, the node u ∈ U satisfies that UB j (u) < LB j (v ′k ). Then it

is still possible that these nodes are from the exact top−k answers.
However, recall that if a node u ∈ U is from the top-k , it should

satisfy that UB(u) < (1 + ϵ) · LB(u)/(1 − ϵ). As a result, if there

exists no nodeu ∈ U such thatUB(u) < (1+ϵ) ·LB(u)/(1−ϵ), then
no node u ∈ U is from the top-k answers, in which case it will not

affect the approximation guarantee.

Afterwards, we proceed a bubble sort on the top-k upper bounds

in decreasing order. If we replace two upper bounds UB j (v ′x ) and
UB j (v ′y ) with x < y, then UB j (v ′x ) < UB j (v ′y ). Also LB j (v ′x ) >
LB j (v ′y ) from the definition. As

UB j (v ′x )/LB j (v ′y ) < UB j (v ′y )/LB j (v ′y ) ≤ (1 + ϵ)
UB j (v ′y )/LB j (v ′x ) < UB j (v ′y )/LB j (v ′y ) ≤ (1 + ϵ)

When the sort finishes, the inequations still hold. We then have

UB ′j (1) ≤ (1 + ϵ) · LB j (v ′i ) · · · ,UB ′j (k) ≤ (1 + ϵ) · LB j (v ′k ).
Also note that

π̂ (v ′i ) ≥ LB j (v ′i ) ≥
1

1 + ϵ
UB ′j (i) ≥ (1 − ϵ) · π (s,vi ),

for all i ∈ [1,k]. So, the answer provides approximation guarantee

if the bounds from the first to the j-th iteration are all correct. By

applying the union bound, we can obtain that the approximation

is guaranteed with probability at least 1 − n · j · p ′
f
.

B EXTENSIONS

B.1 Extending BiPPR to Whole-Graph SSPPR

Recall from Section 2.2 that in BiPPR, it includes both a forward

phase and a backward phase. It is proved in [1] that the amor-

tized time complexity for the backward phase isO
(

m
n ·rmax

)
, and in

[15], it shows that the forward phase requires O
(
rmax ·log (1/pf )

ϵ 2 ·δ
)

time, given the backward phase threshold rmax . Afterwards, they

choose rmax = O
(
ϵ ·

√
m ·δ

n ·log (1/pf )
)
to minimize the time complex-

ity for the pairwise PPR query, which is O

(
1
ϵ

√
m ·log (1/pf )

n ·δ

)
. To

apply BiPPR for whole-graph SSPPR queries, a straightforward ap-

proach is to use it to answer n point-to-point PPR queries (i.e., from

s to every other node). This, however, leads to a total time complex-

ity ofO

(
1
ϵ

√
mn ·log (1/pf )

δ

)
, which is a factor of

√
n larger than that

of the whole-graph SSPPR FORA.

To improve this, we observe that the n point-to-point PPR

queries share the same forward phase, and hence, we can conduct

the forward phase once and then re-use its results for all n back-

ward phase. In addition, to reduce the total cost of n backward

phases, we can set rmax to a larger value; although it would re-

quire more random walks to be generated in the forward phase,

the tradeoff is still favorable as the overhead of the forward phase

has been significantly reduced by the re-usage of results. Since the

backward phase (for all target nodes) has a cost of O
(

m
rmax

)
, it

can be verified that, by setting rmax = O
(
ϵ ·

√
m ·δ

log (1/pf )
)
, the ex-

pected time complexity of this optimized version of BiPPR (for

SSPPR queries) is

O

(
1

ϵ ·
√
δ

√
m · log (1/pf )

)
,

which is identical to that of single-source FORA.

However, as we show in Section 5, the optimized BiPPR is signif-

icantly outperformed by Whole-Graph SSPPR FORA. The reason

is that, even after the aforementioned optimization, BiPPR either

degrades to MC when rmax is large, or still requires performing a

backward phase from each nodev inG, even if π (s,v) is extremely

small and can be omitted. In contrast, single-source FORA does

not suffer from these deficiencies, and avoid examining nodes with

very small PPR values. Instead, it performs a forward search phase,

followed by a number of random walks from the nodes visited in

the search; this process tends to avoid examining nodes with very

small PPR values, since those nodes are unlikely to be visited by

the forward push or the random walks.

B.2 Extending FORA to Source Distributions

Inmany real applications of the personalized PageRank, the source

s can be a distribution (e.g., on a set of bookmark pages) instead of

a single node. We show that our algorithms for single-source-node

FORA can be extended to the case of arbitrary source distributions.

Let σ be the node distribution that the source node s is sampled

from. For any target node t , its personalized PageRank with respect

to σ is defined as [15]:

π (σ , t) =
∑
v ∈V

σ (v) · π (v, t),

where σ (v) is the probability that a sample from σ equals v . To

apply our algorithms, we modify Line 1 of Algorithm 1 to set the

initial residue of each node v as σ (v). Let π◦(σ ,v) (resp. r (σ ,v))
denote the reserve (resp. residue) of node v in the modified ver-

sion of Forward Push. Then, it is easy to prove that the following

invariant holds for the modified version of Forward Push:

π (σ , t) = π◦(σ , t) +
∑
v ∈V

r (σ ,v) · π (v, t).

In particular, the initial states satisfy the above invariant, and by

induction, it can be proved that the invariant still holds after every

push operation. Given the above invariant, our algorithms can be

applied to computeπ (σ , t)without compromising their asymptotic

guarantees. Besides, the indexing scheme presented in Section 3.3

is still applicable, since the maximum number of random walks

required for each node is identical to that in the single-source-node

algorithms.
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